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1 Random Processes

1.1 Motivating Examples
Every model we have seen in the course up to this point has used finite sets
of random variables and finite-dimensional sample spaces. However, many real-
world processes—texts, diseases, stock prices—develop over time and involve
randomness at infinitely many points in time.

Consider for instance the follwing processes:

1. Random Walk Start at X1 = 0, and walk left or right with equal prob-
ability:

0,−1, 0,−1,−2,−3,−4,−3,−4,−3,−2,−1, 0, 1, 2, 1, 2, 1, 2, 1, 2, . . .

2. Bi-Deterministic Process Flip a fair coin to decide whether to produce
the constant sequence

0, 0, 0, 0, 0, 0, . . . or 1, 1, 1, 1, 1, 1, . . .

3. Gappy Process Repeatedly flip a fair coin to choose Xi, but always set
Xi = 0 deterministically if Xi−1 = 1:

0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, . . .

4. Letter Repetitions Repeatedly choose a letter from the English alphabet
and print it k ∼ Geometric(1/2) times:

S S S P M M M M M D H H H K Z T D U C A A A I D T T T Y H H H H Q T T X X . . .

5. Beta Urn Model Put a red (X = 0) and a blue (X = 1) marble in a
bag; repeatedly draw from the bag, adding another marble of the same
color after each drawing:

0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

Such processes seem to have a clear mathematical structure, but this structure
cannot be described in terms of a finite set of random variables. In order to
model them better, we need random processes.
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1.2 Definition
A random process is an infinite collection of random variables X1, X2, X3, . . ..
For the purposes of this course, we will only consider countably infinite collec-
tions, and only discrete variables.

As you will remember, a random variable is a function from an underlying
sample space Ω to a value space X . At each point ω ∈ Ω, the random variable
has a value X(ω) ∈ X , and for each value x ∈ X , there is an information cell
X−1(x) ⊆ Ω consistent with the observation X = x.

If instead we have a finite family of random variables X1, X2, . . . , Xn with
values in X , then every ω ∈ Ω assigns a value vector

(X1(ω), X2(ω), . . . , Xn(ω)) ∈ Xn

to the random vector (X1, X2, . . . , Xn). Reversely, any value vector (or set of
value vectors) corresponds to a subset of Ω with a specific probability.

A random process is the infinite generalization of this idea. To define a
random process, we need to select a sample space Ω, equip it with a probability
distribution P , and then explain how each choice of ω ∈ Ω determines the
infinite series

X1(ω), X2(ω), X3(ω), . . .

Such a countably infinite series of values is generally called a sample path.

Definition 1. A discrete random process is a family of random variables
{Xi}i∈I indexed by a discrete set I, and with values in a discrete space X .

In a nutshell, a random process is thus a probability distribution over a set
of sample paths.

1.3 The Extension Theorem
It can be tricky to specify how to spread out the probability budget across the
universe of sample paths when we use this definition directly. Typically, we are
working with overcountably large bundles of infinitely long sample paths, and
it is not always obvious how to define a distribution over such sets.

Fortunately, the following regularity theorem provides some help.

Theorem 1. (The Daniell-Kolmogorov Extention Theorem) Suppose
two random processes P1 and P2 assign the same marginal probabilities to
all finite-dimensional events. Then they assign the same probabilities to all
countably-infinite-dimensional events.1

1P. J. Daniell proved that infinite-dimensional integrals are uniquely determined from finite-
dimensional ones when the integral preserves limits (see “Integrals in An Infinite Number of
Dimensions,” Annals of Mathematics, Vol. 20(4), 1919). A. Kolmogorov independently arrived
at a similar conclusion about probability measures (see Chapters 2.2 and 3.4 of Grundbegriffe
der Wahrscheinlichkeitsrechnung, Springer, 1933).
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In other words: once you know the probability of any formula defined in
terms of conjunctions, disjunctions, and negations, you also know the probability
of any formula defined in terms of conjunctions, disjunctions, negations, and
countable quantifications. The proof (which I will not reproduce here) relies
crucially on the fact that a probability distribution, by definition, is required to
be countably additive. This ensures nice limit behavior.

1.4 Initial-Segment Representation
Note that if you can compute all probabilities of the form

P (X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) ,

then you can compute the probability of any finite-dimensional event (by setting
Ai = X for the dimensions you are not interested in). In fact, since we are
dealing with discrete random processes, it is also enough to just provide the
point sequence probabilities of the form

P (X1 = x1, X2 = x2, . . . , Xn = xn) .

When the process is discrete, the probability of any finite-dimensional event can
be computed by summing up point probabilities of this type. A discrete random
process P is therefore uniquely determined once we know the point probability
of every initial sequence of values.

An alternative way of describing these initial-segment probabilities is to pro-
vide the continuation probabilities

P (Xn = xn |X1 = x1, X2 = x2, . . . , Xn−1 = xn−1)

along with an unconditional distribution PX1 which provides an initial condi-
tion for the first coordinate. Whichever of these two strategies we use, how-
ever, we need to specify these probabilities for all n, and for all value vectors
x1, x2, . . . , xn.

1.5 Examples
By using the initial-segment formulation of the extension theorem, we can now
formally describe the probability distributions P that model the processes men-
tioned above:

1. Random Walk For every (x1, x2, . . . , xn) ∈ Zn:

P (X1 = x1, X2 = x2, . . . , Xn = xn) =


21−n if x1 = 0and

|xi − xi+1| = 1 for i < n

0 otherwise
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2. Bi-Deterministic Process For every (x1, x2, . . . , xn) ∈ {0, 1}n:

P (X1 = x1, X2 = x1, . . . , Xn = x1) =


1/2 if x1 = x2 = · · · = xn = 0
1/2 if x1 = x2 = · · · = xn = 1

0 otherwise

3. Gappy Process For every (x1, x2, . . . , xn) ∈ {0, 1}n:

P (Xn = xn |X1 = x1, . . . , Xn−1 = xn−1) =


1/2 if xn−1 = 0

0 if xn = xn−1 = 1

1 if xn−1 = 1and xn = 0

with the initial condition P (X1 = 0) = P (X1 = 1) = 1/2.

4. Letter Repetitions For every (x1, x2, . . . , xn) ∈ {A, B, C, . . . , Z}n:

P (Xn = xn |X1 = x1, . . . , Xn−1 = xn−1) =

{
1/2 + 1/2 · 1/27 if xn = xn−1
1/2 · 1/27 if xn 6= xn−1

with the initial condition P (X1 = x) = 1/27 for all x ∈ {A, B, C, . . . , Z}.

5. Beta Urn Model For every (x1, x2, . . . , xn) ∈ {0, 1}n:

P (Xn = 1 |X1 = x1, . . . , Xn−1 = xn−1) =
1 + x1 + · · ·+ xn

2 + n

P (Xn = 0 |X1 = x1, . . . , Xn−1 = xn−1) =
1 + n− x1 − · · · − xn

2 + n

with the initial condition P (X1 = x) = 1/2 for x = 0, 1.

By the extension theorem, each of these families of probability distributions
genelize to a unique distribution P on the set of sample paths. Note that
the first two processes are defined by means of unconditional initial-segment
probabilities, while the last three are defined in terms of conditional continuation
probabilities.

2 Markov Chains

2.1 Transition Probabilities
One particularly important kind of random process is the Markov chain. A
Markov chain

X1 → X2 → X3 → X4 → · · ·
is a random process whose continuation probabilities at time n+ 1 only depend
on the value of Xn. That is, the random variable Xn+1 is conditionally inde-
pendent of all the variables X1, X2, . . . , Xn−1 given Xn. A Markov process is
“forgetful” in the sense that only knows what it did one moment ago, but not
anything further back in the past.
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Definition 2. A random process P is a Markov chain if

P (Xn+1 = xn+1 |X1 = x1, . . . , Xn = xn) = P (Xn+1 = xn+1 |Xn = xn)

for all n and all x1, x2, . . . , xn.2

The conditional probabilities on the right-hand side of this equality are usu-
ally called the transition probabilities of the Markov chain.

Note that several different Markov chains can have the same transition prob-
abilities. If we want these transition probabilities to define a unique random
process, we also need to provide an initial condition PX1

. Once we select this
initial condition, the choice will propagate out the timeline to all later coordi-
nates, settling their marginal distributions.

The transition probabilities of a Markov chain can be described in several
different ways. One option is to draw a transition diagram:

1 2 3
.7

.3

1

.1

.9

Altneratively, we can also provide a transition matrix:

T =

 .3 0 0

.7 0 .1

0 1 .9

 .

The columns of this matrix represents the conditional distribution functions
PXn+1|Xn

, one for each possible condition.
An initial condition PX1 can be represented be a vector v1. The marginal

distributions of X2, X3, . . . can then be computed by matrix multiplication:

v2 = Tv1

v3 = Tv2

v4 = Tv3
...

There is no universally best way of representing a set of transition proba-
bilities. Transition diagrams are compact and easy to inspect visually, while
transition matrices easier to use in computational implementations.

2This terminology is mainly due to the paper “Extension of the Limit Theorems of Prob-
ability Theory to a Sum of Variables Connected in a Chain” (Notes of the Imperial Academy
of Sciences of St. Petersburg, Vol. 22(9), 1907), in which A. A. Markov proved a convergence
result for Markov chains. An English translation is included in R. A. Howard: Dynamic
Probabilistic Systems, Volume I: Markov Models (Wiley, 1971).
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2.2 Markov Models
As Markov himself noticed, Markov chains can be used to model language, and
they remain an extremely useful tool in the prediction and description of natural
language text. As an illustration of how this might work, consider the following
transition diagram:

T

H

E A

_

0.5
0.4

0.1
0.1

0.7
0.2

0.1

0.9

0.7

0.3

0.5

0.2

0.3

With the initial condition PX1
(T) = 1, these transitions define a unique

random process. A representative sample from this process is

T_ATE_T_HE_TE_THE_THE_THAT_T_TE_ATHE_AT_ATHE_T_ATHE_TE . . .

This is of course a toy model which was restricted to these five characters in
order to make it easier to represent. We can of course also use the whole English
alphabet, estimating the transition probabilities from a sample of English text.
In that case, we get samples more along the lines of

THILY_IMANE_ULDEXTHOUNEDES_E_F_AT_BANIERREDAN′S_SCOPLUPT . . .

This is not English, of course, but for some purposes, they get sufficiently
close. Models like these are for instance very good at recognizing the language
of a text, mapping sounds to reasonable English, or predicting what you letter
you will type next on your phone.

As Shannon noted in his 1948 paper,3 we can sample from a Markov approx-
imation of English using nothing but pen, paper, and a book of English prose:
to pick the next letter (xn+1) given preceding one (xn), open the book at a
random page, look for an occurrence of xn, and then select the letter following
it. This way, the transition probabilities in your sample will be equal to the
transition probabilities in the book.

3See Part I, §3, of C. E. Shannon: “A Mathematical Theory of Communication,” Bell
System Technical Journal, Vol. 27(3), 1948.
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2.3 Stationary Distributions
Consider again the gappy process described above. This process is a Markov
chain. Its transition matrix is

T =

(
1/2 1
1/2 0

)
.

Let’s further describe the marginal distributions of this process in terms of the
vectors

vn =

(
pn

qn

)
,

where qn = 1−pn. Since the process is a Markov chain with transition matrix T ,
we know that vn+1 = Tvn for all n. Plugging in the numbers, we get(

pn+1

qn+1

)
=

(
1/2 1
1/2 0

)(
pn

qn

)
=

(
pn/2 + qn

pn/2

)
.

We can think about these equations in physical terms, as if they described the
flow of water between two communicating vessels. It then makes sense to ask
when this system is in equilibrium, that is, for which v∗ we have v∗ = Tv∗.

We can find this equilibrium by solving the equations(
p∗

q∗

)
=

(
p∗/2 + q∗

p∗/2

)
,

which, given the constraint q∗ = 1− p∗, has the unique solution(
p∗

q∗

)
=

(
2/3
1/3

)
.

If this Markov process follows the marginal distribution given by v∗ at any point
in time, it thus follows it at all times.

This marginal distribution is the unique stationary distribution of the
Markov chain. Among all the random processes respecting the given transition
probabilities, the process described by T and v∗ is the only one which has the
same marginal distribution at all points in time.

2.4 Attractive Equilibria
The stationary distribution v∗ is also an attractor for the transition operation:
if we perturb v∗ by a small amount so as to produce the distribution

ṽ∗ =

(
2/3 + ε
1/3− ε

)
,
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then the transition matrix will map ṽ∗ onto

T ṽ∗ =

(
(1/3 + ε/2) + (1/3− ε)

(1/3 + ε/2)

)
=

(
2/3− ε/2
1/3 + ε/2

)
.

0 0.5 1
0

0.5

1

v∗

ṽ∗

T ṽ∗

One step into the future, the distance
to the stationary distribution has thus
been cut exactly in half, |T ṽ∗ − v∗| =
1
2 |ṽ
∗ − v∗|. The Markov chain thus

converges to the stationary distribu-
tion in the sense that

Tnv → v∗ (n→∞)

whatever initial condition v we start
with. In fact, since each time step
cuts down the remaining distance by
a fixed amount, this convergence is
exponentially fast.

Every random process defined by the transition matrix T thus has the same
limiting behavior when we look far enough out into the future. For the transi-
tion matrix in this example, the actual initial condition is therefore of relatively
limited interest, since all the random processes defined by T have similar be-
haviors, and all of them have the exact same limiting behavior. For this family
of processes, we can thus make predictions about the far future without having
any knowledge of the present whatsoever.

2.5 Uniqueness
In the example above, we saw that a family of random processes had a unique
stationary distribution, and that this stationary distribution told us something
important about the limit behavior of the process.

This immediately raises two questions:

1. Do all random processes have stationary distributions?

2. When they do, are these stationary distributions unique?

We will address the existence question below. The uniqueness question, however,
is settled in the negative by the following transition diagram:

1 2 3 41

.5

.5

1

.5

.5

This diagram defines a family of Markov chains whose sample paths move
around on two isolated “islands,” {1, 2} and {3, 4}. Each of these islands defines
a conditional distribution over the sample paths restricted to that island.
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The random processes defined by these two conditional distributions happen
to be identical, and identical to the gappy example in the previous section. We
thus know that

P (Xn = 1 |X1 ∈ {1, 2}) → 2/3

P (Xn = 3 |X1 ∈ {3, 4}) → 2/3

whatever the marginal distribution of X1 is (provided that this distribution
assigns positive probability to the island we condition on).

We thus have at least two stationary distributions for the transition diagram:

1 2 3 4

P ∗1 2/3 1/3 0 0

P ∗2 0 0 2/3 1/3

These two distributions are attractors for two disjoint classes of initial con-
ditions: any initial condition that places all its probability mass on the first
island will eventually converge to P ∗1 , while any initial condition restricted to
the second island will converge to P ∗2 .

Perhaps less obiovusly, when an initial condition endows both islands with
a non-trivial amount of probability mass, the two islands will always retain the
same relative masses (since the probability mass can never cross from one island
to the other). Internally on each island, however, the given endowment will
eventually be distributed in the 2:1 proportion suggested by the two stationary
distributions.

In addition to the two extremes P ∗1 and P ∗2 , any convex combination

P ∗ = λP ∗1 + (1− λ)P ∗2 ,

with λ ∈ [0, 1], is therefore also a stationary distribution for this process. The
combination with mixture proportion λ is an attractor for the Markov chains
defined by the initial condition

PX1(1) + PX1(2) = λ

PX1(3) + PX1(4) = 1− λ

This process thus has an overcountably large number of stationary distributions,
but they are arranged in a relatively simply geometric pattern.

3 Stationary Random Processes

3.1 Definition
As we saw in the previous section, a Markov chain is uniquely determined by
its transition matrix and the initial condition. On their own, the transition
probabilities determine a family of Markov chains. The members of this family
which are stationary can be identified with a set of initial conditions.
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This encoding of the stationary distributions is specific to Markov chains;
it does not carry over to more general random processes. In order to define
are more general concept, we need to remember that a random process is a
probability distribution over sample paths.

What we want to say is then that a distribution P ∗ is stationary if it cannot
to distinguish between the random variables

X1, X2, X3, . . .

and its time-shifted twin
X2, X3, X4, . . .

This intuition can be expressed in terms of the following definition:

Definition 3. A random process P ∗ is stationary if

P ∗ (X1 = x1, . . . , Xn = xn) = P ∗ (X2 = x1, . . . , Xn+1 = xn)

for all n ∈ N and all value vectors (x1, x2, . . . , xn) ∈ Xn.

By induction, this definition implies that a fixed “word” (xk, xk+1, . . . , xk+n)
has the same probability of appearing anywhere in the sample path. The ran-
dom process P ∗ therefore has no concept of “early” and “late,” only of relative
distances in time.

For this reason, it also often makes sense to think of P ∗ as a distribution
over doubly infinite sample paths

. . . , x2, x−1, x0, x1, x2, x3, . . .

rather than the singly infinity sample paths x1, x2, x3, . . . that we have seen
up until now. This technical modification is a useful way of encoding the fact
that infinitely much time has already passed before we start observing P ∗, thus
avoiding a number of complications imposed by “burn-in” times and other issues
specifically related to the beginning of the process.

If we want to recover a distribution over singly infinite sample paths from
such a doubly infinite process, we can always impose an initial condition like
X1 = 0 so as to make sure that the half-process on the right of the origin looks as
we want it to. Note, however, that this conditional process often isn’t stationary
even though P ∗ is.

3.2 Examples
The following examples illustrate the concept of stationary random processes:

1. A stationary Markov chain is a stationary random process. This holds
because the probability of a value vector (x1, x2, . . . , x1+n) only depends
on two things, the marginal distribution of X1 (which by stationary is
equal to X2 = X3 = X4 = · · · ), and the conditional probabilities of Xk+1

given Xk (which by the Markov assumption are the same for all k ∈ N).
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2. The transition probabilities on Z under which we walk left or right with
equal probability define a family of Markov chains with countably infinitely
many states. None of these processes are stationary, as can be seen from
the fact that

Var(Xk) < Var(Xk+1) < Var(Xk+2) < · · ·

for any k ∈ N and any marginal distribution over Xk. Consequently, there
is no probability distribution on the set of sample paths that satisfies these
transition probabilities. This reflects that the fact that such a distribution
can always become more diffuse over time.

3. Consider the process P that repeatedly selects k ∼ Geometric(1/2) and
then prints k left-parentheses and k right-parentheses. A typical sample
path drawn from this process might begin

( ) ( ( ( ) ) ) ( ( ( ) ) ) ( ( ) ) ( ( ) ) ( ( ( ) ) ) ( ( ) ) . . .

This process is not a Markov chain. No finite amount of “memory” is
sufficient to simulate this process, since you may need to look indefinitely
far back to decide whether there are still open parentheses left over.
The process P does, however, have a closely related cousin P ∗ which
is a stationary: this is a stationary distribution over the doubly infinite
sequences of parentheses which is identical to P except that it doesn’t
have a clear starting point.
The easiest way of constructing this stationary process P ∗ is to add a
hidden memory variable that keeps track of how many opening parentheses
that are still left hanging. We can then model P ∗ as a Markov chain with
the transition diagram

(, 1 (, 2 (, 3 (, 4

), 0 ), 1 ), 2 ), 3

· · ·

· · ·

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1

1

This Markov chain has the stationary marginal distribution P ∗X given by

P ∗X(“(”,m) = 2−m−1, m ≥ 1

P ∗X(“)”,m) = 2−m−2, m ≥ 0

By “summing out” the hidden memory variable, this Markov chain defines
a distribution over finite strings and therefore over infinite sequences. Per-
haps not surprisingly, this distribution has the marginal probabilities

P ∗(Xk = “(”) = P ∗(Xk = “)”) = 1/2
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at any single coordinate k. Moreover, if we impose the initial condition
X0 = (“)”, 0) on P ∗, we recover the singly infinite process P .

Note that since we are working with discrete random processes, the strategy
employed in the last example—adding hidden state variables as need—works
quite generally. Even a random process defined in terms of a completely un-
constrained, stochastic Turing machine can be defined as a Markov chain on a
countable state of memory states (i.e., tape contents) and a set of transition
probabilities.

3.3 Time-Invariant Properties
Having now introduced and rehearsed the concept of general stationary distri-
butions, we will state and prove a theorem about the uniqueness of long-term
averages. For this, we first need a new concept:

Definition 4. A bundle of sample paths B ⊆ XN is time-invariant if

(x1, x2, x3, . . .) ∈ B =⇒ (x2, x3, x4, . . .) ∈ B.

If we think of the bundle B as a predicate, then the time-invariant predicates
are those that are true or false of the sample path as a whole, regardless of which
coordinate we count as “time 0.” Examples of time-invariant properties are:

1. The sample path never visits a certain region A ⊆ X .

2. The sample path never leaves the region A ⊆ X .

3. The sample path visits A ⊆ X infinitely often.

4. The sample path visits A ⊆ X with a certain limiting frequency.

5. The sample path is a constant sequence x, x, x, x, . . ..

6. The sample path never transitions directly to x2 ∈ X from x1 ∈ X .

7. The sample path converges. (Applicable when X is a metric space.)

As these examples suggest, it can sometimes be useful to think about time-
invariant as “traps” or “black holes” that you cannot get out of however far into
the future you go. Note also that time-invariance is preserved under conjunction,
disjunction, and negation.

In the context of a random process P , we call a bundle of sample paths
trivial if it has P -probability 0 or 1. As we shall see below, it is of crucial
interest to investigate whether a distribution P has any time-invariant bundles
with non-trivial probability. If it does, then different sample paths may suggest
radically different pictures of the process P .
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3.4 Uniqueness of Limiting Time-Averages
Suppose we define some function f which maps any sample path x = x1, x2, x3, . . .
onto a real number. f might for instance map the sample path x to 1 or 0 de-
pending on whether its first coordinate is an element of some set A; or it might
map the whole sample path to its limit, if this makes sense in the context.

Given such a function and a sample path x = x1, x2, x3, . . ., we can then
define the nth time-average of f along x as

Anf(x) =
f(x1, x2, . . .) + f(x2, x3, . . .) + · · ·+ f(xn, xn+1, . . .)

n
.

Anf(x) is thus an average n numbers, namely the outputs we get by feeding the
first n time-shifted versions of the sample path x into f . Both f and Anf are
thus functions of the sample path x, and therefore random variables.

We then have the following theorem:

Theorem 2. (Uniqueness of Averages) Let P be a random process and
f : XN → R an integrable function whose time-average almost always converge,

P
(
x : lim

n→∞
Anf(x) exists

)
= 1.

Suppose further that P only has trivial trapping sets. Then there is a unique
limiting average τ∗ such that

P
(
x : lim

n→∞
Anf(x) = τ∗

)
= 1.

In other words, the limit of Anf (which is a random variable) almost always
has the same value.

Proof. Statements about limits are time-invariant. By assumption, all time-
invariant sets are trivial under P . Hence, any statement about the limit of Anf
either has probability 0 or probability 1. Consequently, the limit statement

Bτ =
{
x : lim

n→∞
Anf(x) ≤ τ

}
has probability 1 above some threhold τ∗, and probability 0 for any smaller τ <
τ∗. By the triviality assumption, P (Bτ ) must jump in this way. However, P (Bτ )
is the cumulative distribution of the random variable limn→∞Anf(x). Since this
cumulative distribution is a step function, limn→∞Anf(x) is deterministic.

As an application of this theorem, let f be the indicator function

f(x) = IA(x1) =

{
1 x1 ∈ A
0 x1 6∈ A

The time-average Anf is then the relative frequency with which the values
x1, x2, . . . , xn lie in the set A. The theorem above tells us that if the random
process has no non-trivial time-invariant properties, then this visiting frequency
converges to the same number for n→∞ with probability 1. Similar statements
can be derived for the frequencies of bigrams, trigrams, and other “words.”
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3.5 A Remark on Existence
While the theorem in the previous section provides the sufficient condition for
almost everywhere unique time-averages, the corresponding existence theorem
requires a different and much more involved argument.

We can then state the existence theorem as follows:

Theorem 3. (The Ergodic Theorem) Let P ∗ be a stationary random
process and f an integrable function. Then the time-averages of f converge on
almost all sample paths,

P ∗
(

lim
n→∞

Anf exists
)

= 1.

Moreover, if all time-invarient sets are trivial under P ∗, then

P ∗
(

lim
n→∞

Anf = E∗[f ]
)

= 1,

where E∗[f ] is the expectation of f under P ∗.

The existence statement included in this theorem says that integrable func-
tions interact nicely with the averaging operation.

There are essentially two ways of proving this. One is to show that the
space of integrable functions is spanned by a smaller set whose time-dependent
components vanish as we increase the number of terms.4 The other is to proceed
via the so-called maximal ergodic theorem, which provides a Markov-like bound
on the probability that any of the n first time-averages deviate substantially
from the expectation of f .5 Both proofs are rather complex, and I will not
reproduce them here.

3.6 Attractor Distributions
In many situations, we are not drawing our sample path from a stationary
distribution P ∗, but from some closely related non-stationary distribution P .
As we saw in the case of Markov chains, however, the stationary distribution
P ∗ may still sometimes work as an attractor for “similar” processes P , so that
the limiting behavior of P is the one modeled by P ∗.

In this section, we formulate a condition that guarantees that this attractor
status for the stationary distribution. For this, we first need a definition:

Definition 5. We say that a distribution P is absolutely continuous with
respect to P ∗ if

P ∗(B) = 0 =⇒ P (B) = 0

for all measurable sets B. We write this P ∗ � P .
4See J. von Neumann: “Proof of the Quasi-ergodic Hypothesis,” Proceedings of the Natural

Academy of Sciences of the USA, Vol. 18(1), 1932.
5See G. D. Birkhoff: “Proof of the ergodic theorem,” Proceedings of the Natural Academy

of Sciences of the USA, Vol. 17(12), 1931.
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Note that P ∗ � P does not imply P ∗(B) ≥ P (B) for all B. It only means
that setting P ∗(B) = 0 “squeezes down” P (B) to 0, and setting P (B) > 0
“pushes up” P ∗(B) above 0. (This is only translates to the inequality P ∗(B) ≥
P (B) if we consider all positive numbers p ∈ (0, 1] as equally big.)

Note also that when P ∗ � P ,

P ∗(B) = 1 =⇒ P (B) = 1,

since the complement of a set for which P ∗(B) = 1 will satisfy P ∗(Bc) = 0 and
hence P (Bc) = 0.

We can now state the simple but useful corrollary:

Theorem 4. (Convergence of Averages) Suppose the measures P and P ∗
define two random process, and that

1. P ∗ is a stationary distribution;

2. P is absolutely continuous with respect to P ∗, P ∗ � P .

Then for any integrable f ,

P
(

lim
n→∞

Anf exists
)

= 1.

If further all time-invarient sets are trivial under P ∗, then

P
(

lim
n→∞

Anf = E∗[f ]
)

= 1.

Proof. The probability of these two events are 1 under P ∗. By the absolute
continuity assumption, the same holds under P .

As an application of this theorem, consider a stationary random process P ∗.
Define the conditional process P as

P (B) = P ∗(B |X1 = x1)

for some x1 ∈ X with P ∗(X1 = x1) > 0.
The two random processes are then similar except for the fact that we force

P to take a detour past x1 at time n = 1. This is relevant, for instance, if we
model some kind of diffusion process with a known starting state.

However, since P ∗(X1 = x1) > 0, the new process is absolutely continuous
with respect to the old. Any event which is impossible under the stationary dis-
tribution is also impossible under its conditionalized version. The two processes
thus have the same limit behavior, and the time-averages of both are given by
the stationary distribution.

One way of reading the theorem above is that different stationary distribu-
tions can act as “sinks” which describe different kind of limit behavior. If a
random process has limiting time-averages along almost all sample paths, but
time-invariant sets with non-trivial probabilities, then each time-invariant set
can describe a different sink with a different limiting behavior.
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